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Abstract

Brown and Wanger [J. Exp. Psychol. 68 (1964) 503] investigated rat behaviors
with the following features: (1) rats were exposed to reward and punishment at the
same time, (2) environment changed and rats relearned, and (3) rats were stochasti-
cally exposed to reward and punishment. The results are that exposure to nonrein-
forcement produces resistance to the decremental effects of behavior after stochastic
reward schedule and that exposure to both punishment and reinforcement produces
resistance to the decremental effects of behavior after stochastic punishment sched-
ule. This paper aims to simulate the rat behaviors by a reinforcement learning
algorithm in consideration of appearance probabilities of reinforcement signals. The
former algorithms of reinforcement learning were unable to simulate the behavior
of the feature (3). We improve the former reinforcement learning algorithms by
controlling learning parameters in consideration of the acquisition probabilities of
reinforcement signals. The proposed algorithm qualitatively simulates the result of
the animal experiment of Brown and Wanger.
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1 Introduction

Reinforcement learning (RL) (Sutton and Barto, 1998) is a theory for learn-
ing how to map situations to actions by trial-and-error so as to maximize a
numerical reward signal. The theory has been applied to a variety of dynamic
optimization problems such as game problems, robotic control, and dynamic
allocation problems (Sutton and Barto, 1998). Schultz and Dayan (1997) and
Montague et al. (1996), on the other hand, showed that the RL theory is able
to account for dopamine neurons responses to prediction of reward in vivo. In
this paper, we examine whether the RL theory is able to completely explain
animal behaviors related to reward, punishment and, especially, appearance
probabilities of reinforcement signals.

Brown and Wagner (1964) investigated rat behavior in conflict of approach
and avoidance with the following features: (1) rats were exposed to reward and
punishment at the same time, (2) environment changed and rats relearned, and
(3) rats were stochastically exposed to reward and punishment. The results
are that exposure to nonreinforcement produces resistance to the decremental
effects of behavior after stochastic reward schedule and that exposure to both
punishment and reinforcement produces resistance to the decremental effects
of behavior after stochastic punishment schedule.

We confirm that previous proposed RL algorithms are able to account for
the results of Brown and Wagner (1964). The conventional algorithms, such
as Actor-Critic (AC) (Sutton and Barto, 1998) and Q-learning (Watkins and
Dayan, 1992; Sutton and Barto, 1998), are unable to account for all features
mentioned above. Accordingly, we evaluate several other recent algorithms,
though based on the conventional algorithm. At first, we adapt two dimen-
sional evaluation RL algorithm (Okada et al., 2001) for simulating the feature
(1) of Brown and Wagner (1964) experiment. Second, we apply the RL al-
gorithm for rapidly following unexpected environmental changes (Murakoshi
and Mizuno, 2004) for corresponding to the feature (2) of Brown and Wagner
(1964) experiment. However, we cannot find an algorithm according to the
feature (3) of Brown and Wagner (1964) experiment.

This paper aims to simulate the rat behaviors in conflict of approach and
avoidance by RL in consideration of appearance probabilities of reinforcement
signals. The previous algorithms of RL were unable to simulate the behavior of
the feature (3) of Brown and Wagner (1964) experiment, rats are stochastically
exposed to reward and punishment. We improve the previous RL algorithms by
controlling learning parameters in consideration of the acquisition probabilities
of reinforcement signals.
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2 Method

In order to simulate the rat behaviors of Brown and Wagner (1964) experi-
ment, firstly, we briefly introduce the experiment, and model the experiment
for reinforcement learning algorithms in Sec. 2.1. Secondly, in Sec. 2.2, we
briefly introduce two dimensional evaluation RL by Okada et al. (2001), and
show that the algorithm is expected to simulate the feature (1) of Brown
and Wagner (1964) experiment, namely, (1) rats were exposed to reward and
punishment at the same time. Thirdly, in Sec. 2.3, we extend RL algorithm
for rapidly following unexpected environmental changes by Murakoshi and
Mizuno (2004) with the two dimensional evaluation algorithm (Okada et al.,
2001), and show that the RL algorithm is able to simulate the feature (2) of
Brown and Wagner (1964) experiment, namely, (2) environment changed and
rats relearned. Finally, in Sec. 2.4, we propose a RL algorithm in considera-
tion of the acquisition probabilities of reinforcement signals for simulating the
feature (3) of Brown and Wagner (1964) experiment, namely, (3) rats were
stochastically exposed to reward and punishment.

2.1 experiment by Brown and Wagner (1964) and modeling

Brown and Wagner (1964) experimented behaviors of rats as follows. 3 groups
of 30 rats were trained in a simple runaway to a goal box where they obtained
electrical punishment or food reward. During acquisition, Group N was ex-
posed to nonreinforcement on a 50% reward schedule, Group P was exposed
to gradually increasing punishment along with consistent reward, while Group
C was never punished and received reward only on all trials. After the acqui-
sition, half of each group was then tested for the decremental effects of either
consistent nonreinforcement (Nonreinforcement condition) or consistent both
strong punishment and reward (Punishment condition).

Brown and Wagner (1964) reported running speeds as results. During the
acquisition, mean running speeds of rats of each group were increasing with
blocks of trials; the only difference among the groups was a repression of
Group P speeds below those of Groups C and N. After the acquisition, several
features of the results are apparent. First, the two test conditions produced
similar response decrements in the two C subgroups that had received no prior
experience with nonreinforcement or punishment. Secondly, exposure to either
nonreinforcement or punishment during acquisition produced resistance to the
decremental effects: the running speeds of Group P Subjects in Punishment
condition and Group N Subjects in Nonreinforcement condition decreased only
negligibly.
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We model the above situation to simulate the behaviors of rats by a RL
algorithm. Studies in rats have shown that neurons in the hippocampus have
spatial firing fields (O’Keefe and Dostrovsky, 1971; Wilson and McNaughton,
1994). These cells are called place cells. Each place cell fires when an animal
find itself in a particular location. Then, we define a discrete position of a rat
as a state in RL algorithm. The length of the position is set to be a body
length of the rat. The number of states is set to 6 including the goal state. An
action in RL algorithm is, alternatively, advance or stay for simplicity.

2.2 Two dimensional evaluation RL (Okada et al., 2001)

To solve the problem of trade-off between exploration and exploitation actions
in reinforcement learning, Okada et al. (2001) proposed two-dimensional eval-
uation reinforcement learning, based on conventional AC architecture, which
distinguishes between reward and punishment evaluation forecasts. Critic con-
sists of a reward section and a punishment section. Each section receives a
state (s), a reward evaluation rR，and a punishment evaluation rP according
to the environment. Interest (δ+) and Utility (δ−) are defined according to the
temporal difference (TD) errors (δR and δP ) as follows:

δ− = δR − δP (1)

δ+ = |δR| + |δP |. (2)

Actor learns an action strategy using δ− (Utility) as a de facto reinforcement
signal and δ+ (Interest) to determine the ration of exploitation action to en-
vironmental search action.

Advance probability of a rat Go can be defined as follows:

Go =
exp

(
p(s,0)
δ+(t)

)

exp
(

p(s,0)
δ+(t)

)
+ exp

(
p(s,1)
δ+(t)

) , (3)

where p(s, a) indicates the desirability of executing action a in state s at time
t, and a = 0 means advance of the rat while a = 1 means stay of the rat.
p(s, a) is calculated as expressed below:

p(s, a) ← p(s, a) + αpδ
−(t) (4)

where positive constant αp represents the learning rate of actions.

Conventional RL methods such as Actor-Critic (AC) (Sutton and Barto, 1998)
utilize only the difference between reward and punishment. In comparison, the
two dimensional evaluation method (Okada et al., 2001) determines the sum
of reward and punishment to determine an action. Thus, we expect that the
two dimensional evaluation RL algorithm (Okada et al., 2001) can simulate
the feature (1) of Brown and Wagner (1964) experiment, namely, (1) rats were
exposed to reward and punishment at the same time.

4



2.3 RL algorithm for rapidly following unexpected environmental changes
(Murakoshi and Mizuno, 2004) and its expansion

In order to rapidly follow unexpected environmental changes, Murakoshi and
Mizuno (2004) proposed a parameter control method in RL that changes each
of learning parameters in appropriate directions by considering an emergency
as a key word. To recognize unexpected environmental changes, Murakoshi
and Mizuno (2004) simply computed the decrease in the current sum of reward
from the previous sum of reward as follows:

if (down rt−1 < down rt) then sum rt−1 = 0 (5)

down rt+1 = down rt + (sum rt − sum rt−1) (6)

if (down rt+1 > 0) then down rt+1 = 0, (7)

where sum rt is the current sum total of reward for a step interval n, and
sum rt−1 is the one previous sum total of reward; down r is the variable
indicating how much sum rt decreases compared with sum rt−1. Using this
down r, Weight wRχ which is attached to the learning parameter χ (χ = α,
αact, β, or γ) in RL is calculated to change the learning parameters after
environmental changes as follows:

wRχ = 1 +
hRχ

1 + exp((6/sRχ)(down r + sRχ))
. (8)

Figure 1 indicates wRχ. wRχ is prevented from the divergence of learning by
setting the maximum hRχ + 1 as shown in the sigmoid function of Fig. 1. The
initial value of wRχ is approximately one because down r equals zero . When
down r efficiently decreases, the variable wRχ increases hRχ + 1 times. To any
down r depending on learning problems, wRχ is approximately maximum at
the minimum of down r owing to 6/sRχ in Eq. (8).

We expand the algorithm of Murakoshi and Mizuno (2004) with two dimen-
sional evaluation algorithm (Okada et al., 2001). For two dimensional evalu-
ation, we also compute the increase in the current sum of punishment from
the previous sum of punishment. Because we think that the information of
the increase of punishment is seriously important for animals. Therefore, the
following calculation is proposed:

if (up pt−1 > up pt) then sum pt−1 = 0 (9)

up pt+1 = up pt + (sum pt − sum pt−1) (10)

if (up pt+1 < 0) then up pt+1 = 0 (11)

wP χ = 1 +
hPχ

1 + exp((6/sPχ)(−up p + sPχ))
, (12)
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Fig. 1. Relationship of down r to wRχ.

where sum pt is the current sum total of punishment for a step interval n,
and sum pt−1 is the one previous sum total of punishment; up p is the vari-
able indicating how much sum pt increases compared with sum pt−1. Figure
2 indicates wPχ. wPχ is prevented from the divergence of learning by setting
the maximum hPχ + 1 as shown in the sigmoid function of Fig. 2. When
up r efficiently increases, the variable wPχ increases hPχ + 1 times. To any
up p depending on learning problems, wPχ is approximately maximum at the
minimum of up p owing to 6/sPχ in Eq. (12).

We describe the equations involving the learning parameters varied by adopt-
ing the above proposed method as follows:

δR = rR(t) + (γR/wRγ) · VR(t + 1) − VR(t) (13)

δP = rP (t) + (γP /wPγ) · VP (t + 1) − VP (t) (14)

VR(t) = VR(t) + (αR · wRα) (15)

VP (t) = VP (t) + (αP · wPα) (16)

Go =
exp

(
p(s,0)·wβ

δ+(t)

)

exp
(

p(s,0)·wβ

δ+(t)

)
+ exp

(
p(s,1)·wβ

δ+(t)

) (17)

p(s, a) ← p(s, a) + (αact · wαact)δ
−(t), (18)

where wβ equals the average of wRβ and wPβ; wαact equals the average of wRαact

and wPαact.
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Fig. 2. Relationship of up p to wPχ.

The learning parameters are not flexibly altered on conventional RL methods
such as Actor-Critic (AC) (Sutton and Barto, 1998). In comparison, the RL
algorithm for rapidly following unexpected environmental changes (Murakoshi
and Mizuno, 2004) flexibly alters the learning parameters after environmen-
tal changes. Thus, we expect that the RL algorithm for rapidly following
unexpected environmental changes (Murakoshi and Mizuno, 2004) is able to
simulate the feature (2) of Brown and Wagner (1964) experiment, namely, (2)
environment changed and rats relearned.

2.4 RL algorithm in consideration of appearance probabilities of reinforce-
ment signals

In the experiment by Brown and Wagner (1964), rats were stochastically ex-
posed to reward and punishment. Desiring to correspond to this situation, we
hypothesize on appearance probabilities of reinforcement signals as follows.
Rats are able to recognize appearance probabilities of nonreinforcement and
punishment. Moreover, the rats can suppose the maximum reward and pun-
ishment when they are invariably exposed to reward and punishment. From
the hypothesis, we formulate the rule updating SRχ in Eq. (8) and SPχ in Eq.
(12) as follows:

if (sRχ < 0.6 · sum r/prob R) then sRχ = 0.6 · sum r/prob R (19)
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if (sPχ < 0.6 · sum p/prob P ) then sPχ = 0.6 · sum p/prob P, (20)

where prob R and prob P (0 < prob R, prob P ≤ 1) indicate appearance
probabilities of reward and punishment, respectively, for step n. prob R and
prob P are calculated as following equations:

if (count r! = 0) then prob R = count r/count g (21)

if (count p! = 0) then prob P = count p/count g, (22)

where count g, count r，and count p are frequency of reaching the goal, fre-
quency of obtaining reward, and frequency of obtaining punishment, respec-
tively.

We discuss a possibility to assess the occurrence of appearance probabilities of
reinforcement signals. In addition to the place cells as mentioned in Sec. 2.1,
stimulation of certain regions of the brain of a rat acts as obtaining reward or
punishment (Olds, 1976). If these reinforcement-related neurons are bound to
the place cells by a certain method, it is possible to assess the occurrence of
appearance probabilities of reinforcement signals. Although the biding method
have not yet been perfectly clarified, there is a practicable method such as
neuronal spike binding (Gray et al., 1989; Vaadia et al., 1995).

Even RL algorithm for rapidly following unexpected environmental changes
(Murakoshi and Mizuno, 2004) could not perfectly simulate the behavior of
rats in conflict of approach and avoidance because of lack of corresponding to
appearance probabilities of reinforcement signals. In comparison, our current
RL algorithm is taking appearance probabilities of reinforcement signals into
consideration. Thus, we expect that the RL algorithm in consideration of
appearance probabilities of reinforcement signals can simulate the feature (3)
of Brown and Wagner (1964) experiment, namely, (3) rats were stochastically
exposed to reward and punishment.

3 Simulation

We conduct simulations in the four reinforcement learning algorithms: con-
ventional AC algorithm (Sutton and Barto, 1998), two dimensional evaluation
algorithm (Okada et al., 2001), extended RL algorithm for rapidly following
unexpected environmental changes (Murakoshi and Mizuno, 2004), and RL
algorithm in consideration of appearance probabilities of reinforcement sig-
nals. AC architecture (Sutton and Barto, 1998) involves discount factor (γ),
learning rate of the critic (α), learning rate of the actor (αact), and inverse
temperature (β). We obtained the parameter values, γR = 0.9, γP = 0.9,
αR = 0.1, αP = 0.1, αact = 0.05, and β = 3.3, from the preliminary simu-
lations in which rats learn to reach the goal similar to the behavior in the
experiment for the acquisition by Brown and Wagner (1964).
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Here we have necessity to decide the values of reward and punishment. The
values, however, cannot be directly found in the experiment by Brown and
Wagner (1964). Then, we obtain the ratio of the maximum value of reward
to that of punishment from the preliminary simulations: we found the ratio
which rats learn to reach the goal for the acquisition term. The ratio was 1.0
to 1.4; thus, we assign the value 1.0 and 1.4 to the maximum value of reward
and punishment, respectively, in all simulations. In all acquisition simulations
with punishment, value of the punishment is set to increase by 4% by learning
middle stage at every block, and the value is set to increase by 8% after
the middle stage at every block by adjusting to Brown and Wagner (1964)
experiment. The remaining parameters are described in each subsection of
simulation.

3.1 Conventional AC

Only the evaluation of reinforcement signal of this algorithm is one dimen-
sional. Thus, the parameters are set: γ = γR = γP , α = αR = αP , and the
values of punishment are redefined as negative.

The simulation results are shown in Fig. 3 and 4. The left hand side from the
dotted vertical line at 10 blocks is the term of the acquisition while the right
hand side is the term of each condition. Although learning for the acquisition
almost succeeded, the conventional AC could not simulate the experiment by
Brown and Wagner (1964) in both conditions: especially, there was almost no
difference among the groups.

3.2 Two dimensional evaluation algorithm (Okada et al., 2001)

The simulation results are shown in Fig. 5 and 6. Although the difference
between the result of Nonreinforcement and Punishment expanded, two di-
mensional evaluation algorithm (Okada et al., 2001) could not simulate the
experiment by Brown and Wagner (1964) in both conditions: there was no
large difference among the groups.

3.3 extended RL algorithm for rapidly following unexpected environmental
changes

The remaining parameters are set as follows: n = 100, hγ = 1.0, hRβ = hPβ =
1.0, hRα = hPα = 2.0, hRαact = hPαact = 4.0 obtained from Murakoshi and
Mizuno (2004).
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Fig. 3. Simulation result in Nonreinforcement condition by conventional AC.
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Fig. 4. Simulation result in Punishment condition by conventional AC.

The simulation results are shown in Fig. 7 and 8. Although the difference be-
tween the result of Nonreinforcement and Punishment spreaded, the extended
RL algorithm for rapidly following unexpected environmental changes could
not perfectly simulate the experiment by Brown and Wagner (1964) : the run-
ning speeds of Group C Subjects in Punishment condition did not decrease,
and the running speeds of Group N Subjects in Nonreinforcement condition
fell from the initial speeds.
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Fig. 5. Simulation result in Nonreinforcement condition by two dimensional evalu-
ation algorithm (Okada et al., 2001)
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Fig. 6. Simulation result in Punishment condition by two dimensional evaluation
algorithm (Okada et al., 2001).

3.4 RL algorithm in consideration of appearance probabilities of reinforce-
ment signals

All parameters are the same as shown in Sec. 3.3. The simulation results are
shown in Fig. 9 and 10. The RL algorithm in consideration of appearance
probabilities of reinforcement signals could quantitatively simulate the exper-
iment by Brown and Wagner (1964): the running speeds of Group C Subjects
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Fig. 7. Simulation result in Nonreinforcement condition by extended RL algorithm
for rapidly following unexpected environmental changes.
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Fig. 8. Simulation result in Punishment condition by extended RL algorithm for
rapidly following unexpected environmental changes.

in both conditions decreased, and the running speeds of both Group N Sub-
jects in Nonreinforcement condition and Group P in Punishment condition
did not decrease from those of the other conditions.
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Fig. 9. Simulation result in Nonreinforcement condition by RL algorithm in consid-
eration of appearance probabilities of reinforcement signals.
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Fig. 10. Simulation result in Punishment condition by RL algorithm in consideration
of appearance probabilities of reinforcement signals.

4 Conclusion

We propose a RL algorithm in consideration of the acquisition probabilities of
reinforcement signals. The algorithm qualitatively simulates the results of the
animal experiment of Brown and Wagner (1964) in which rats were stochas-
tically exposed to reward and punishment.
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In the experiment by Brown and Wagner (1964), the appearance probabilities
of reinforcement signals are only 50%, 100% or 0%. Our proposed algorithm is
able to forecast the results with the other appearance probabilities. The ver-
ification of the results will have to wait for the results of another behavioral
experiments. Additionally, considering how the brain hardware recognizes ap-
pearance probabilities of reinforcement signals is a future work.
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