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Abstract

In order to rapidly follow unexpected environmental changes, we propose a pa-
rameter control method in reinforcement learning that changes each of learning
parameters in appropriate directions. We determine each appropriate direction on
the basis of relationships between behaviors and neuromodulators by considering
an emergency as a key word. Computer experiments show that the agents using
our proposed method could rapidly respond to unexpected environmental changes,
not depending on either two reinforcement learning algorithms (Q-learning and
actor-critic architecture) or two learning problems (discontinuous and continuous
state-action problems).
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1 Introduction

Reinforcement learning (Sutton & Barto, 1998) is a theory for learning how
to map situations to actions by trial-and-error so as to maximize a numerical
reward signal. The theory has been applied to a variety of dynamic optimiza-
tion problems such as game problems, robotic control, and dynamic allocation
problems (Sutton & Barto, 1998). In such dynamic environments, consider a
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case in which an agent controlled by reinforcement learning encounters unex-
pected environmental changes after the agent has almost learned the environ-
ment. Can the agent rapidly follow the unexpected environmental changes?

Schweighofer and Doya (2003) proposed a learning algorithm based on a con-
ceptual theory (Doya, 2002) in which parameters in reinforcement learning are
adjusted by neuromodulators. In their algorithm, three learning parameters
are dynamically adjusted. If all three learning parameters are changed ap-
propriately, the agent will be able to follow unexpected environment changes
rapidly and, simultaneously, flexibly. The algorithm of Schweighofer and Doya
(2003), however, could not rapidly respond to unexpected environmental changes.
The reason is that not all learning parameters are always improved in their
method since they are changed by stochastic method.

In order to rapidly follow unexpected environmental changes, we propose a
parameter control method that changes each of the parameters in appropriate
directions. We determine each appropriate direction on the basis of relation-
ships between behaviors and neuromodulators by considering an emergency
as a key word. To evaluate the performance of our method, we compare it to
the algorithm of Schweighofer and Doya (2003) and the algorithms with fixed
parameters, by means of computer experiments.

Section 2 explains the appropriate directions of changing parameters in an
emergency such as an unexpected environmental change. We propose in Sec-
tion 3 a parameter control method of the rapidly following unexpected en-
vironmental changes. Section 4 shows the results of computer experiments.
Section 5 concludes this paper.

2 Parameters in reinforcement learning and neuromodulators in
an emergency

In order to rapidly follow unexpected environmental changes, we discuss how
the appropriate directions of changing parameters are decided. The number of
combination of the directions of changing three parameters is eight. When the
time has been limited, it is difficult to find the optimum combination. Then,
we decide the directions of the change by considering an emergency as a key
word. An emergency is an unexpected and difficult situation, which happens
suddenly and which requires rapid actions to deal with it. We describe below
the correspondence of the parameters in the reinforcement learning algorithms
and neuromodulators in an emergency such as an unexpected environmental
change.

An agent in reinforcement learning to learn to obtain reward r corresponding
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to its action. The state value function Vt is then defined as

Vt = rt + γ · Vt+1. (1)

where γ is a parameter, 0 ≤ γ ≤ 1, called discount factor. The discount factor
γ, which is controlled by serotonin (5-HT), determines how far into the future
the agent should consider in reward prediction and action selection (Doya,
2002). A low level of serotonin is often associated with impulsive behaviors,
such as aggression (Wolff & Leander, 2002; Doya, 2002). Wolff and Leander
(2002), for example, showed that selective serotonin reuptake inhibitors (SS-
RIs) decrease impulsive behavior as measured the length of delay to a large
reinforcement in the pigeon. In the experiment, the pigeon mostly chose not
a small immediate reward but a larger delayed reinforcement in a higher level
of serotonin. In an emergency, on the other hand, rapid actions are required.
Such rapid actions will lead to a choice of a smaller immediate reward. Thus,
we consider that the decrease of serotonin (γ) will be appropriate in an emer-
gency.

Any deviation from the consistency condition in Eq. (1), expressed as

δ = rt + γVt+1 − Vt, (2)

should be zero on average. This temporal difference (TD) error δ, which is
signaled by dopamine (DA), is the essential learning signal for reward pre-
diction and action selection. We think this TD error δ does not need not to
be changed because its change is included in the conventional reinforcement
learning algorithms.

The state value function Vt is updated as

Vt ← Vt + α · δ, (3)

where α is the learning rate. The learning rate α is controlled by acetylcholine
(ACh) (Doya, 2002). What has already been learned could be rapidly over-
written if α is set to a very large value. Fadda, Cocco, and Stancampiano
(2000) found acetylcholine release increased during learning tasks. The be-
ginnings of learning tasks happen suddenly and require rapid actions to deal
with it. In a word, the beginnings of learning tasks are a kind of beginnings of
emergency. Thus, we consider that the increase of acetylcholine (α) is required
in an emergency.

A typical method of action-selection according to the action value pij (i and j
indicate a state and an action, respectively) is Boltzmann selection. It chooses
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action with probability

Pij =
exp(βpij)

∑n
k=1 exp(βpik)

, (4)

where the parameter β, which is called the inverse temperature, is controlled by
noradrenaline (NA) (Doya, 2002). High inverse temperatures cause a greater
difference in selection probability for actions that differ in their value esti-
mates. This means that an agent does exploitation by using the probability
of actions effectively. The noradrenergic neurons in the locus coeruleus (LC)
have been known to be activated when an animal encounters an unfamiliar en-
vironment (Vankov, Hervé-Minvielle, & Sara, 1995). This situation is exactly
an emergency. Thus, noradrenaline (β) increases in an emergency.

In the other algorithms (e.g. Ishii, Yoshida, & Yoshimoto, 2002), the parameter
β is set small in order to encourage exploratory behaviors when environment
changes. This method is effective when there is enough time. If there is no
enough time for exploration, however, the agent could not have much reward
for a short time. To the contrary, β in our method is changed to the opposite
direction in order to obtain reward rapidly.

From the above consideration, we summarize relationships between neuromod-
ulators and behaviors in emergency in Table 1. In our method, we change the
parameters in these directions as a hypothesis, respectively, in order to obtain
reward rapidly. This hypothesis is verified by computer experiments in Section
4.

3 Parameter control method

In consideration of the discussion in Section 2, we design an algorithm with
the capability of relearning rapidly to follow environmental changes by chang-
ing the learning parameters, α, γ, and β. In order to recognize unexpected
environmental changes, we simply compute the decrease in the current sum of
reward from the previous sum of reward.

Therefore, the following algorithm is proposed.

if (down rt−1 < down rt) then sum rt−1 = 0 (5)

down rt+1 = down rt + (sum rt − sum rt−1) (6)
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Table 1
Neuromodulators and behaviors in emergency.

parameter neuromodulator behavior

α up acetylcholine up renewal

β up noradrenaline up exploitation

γ down serotonin down impulsive behavior
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Fig. 1. Relationship of down r to weight of parameters.

if (down rt+1 > 0) then down rt+1 = 0, (7)

where sum rt is the current sum total of reward for a step interval n, and
sum rt−1 is the one previous sum total of reward; down r is the variable
indicating how much sum rt decreases compared with sum rt−1. When the
agent does not obtain reward owing to unexpected environmental changes,
down r is decreased. The amount of reduction of obtained reward is expressed
by adding the difference between sum rt and sum rt−1 to down r, as shown
in Eq. (6). Since there is no necessity for relearning when down r is positive,
it is set to zero in Eq. (7). Equation (5) is necessary for returning down r to
zero after relearning.

To change the learning parameters after environmental changes, the weight
wχ which is attached to the learning parameter χ (χ =α, β, or γ) is calculated
as

wχ = 1 +
hχ

1 + exp((6/sχ)(down r + sχ))
. (8)

Figure 1 indicates wχ. wχ is prevented from the divergence of learning by
setting the maximum hχ + 1 as shown in the sigmoid function of Fig. 1. The
initial value of wχ is approximately one because down r equals zero. When
down r efficiently decreases, the variable wχ increases hχ + 1 times. To any
down r depending on learning problems, wχ is approximately maximum at
the minimum of down r owing to 6/sχ in Eq. (8).

In the algorithm of Schweighofer and Doya (2003), the difference between a
short-term and a long-term running average of the reward to update learn-
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ing parameters, which leads to detect environmental changes. The difference
value, however, gradually approaches to zero even if obtained reward is not in-
creased after an environmental change. This would be one of reasons why the
algorithm cannot rapidly respond to environmental changes. In our method,
the decrease of obtained reward, down r, as calculated in Eqs. (5), (6), and
(7) does not return to zero until obtained reward is increased after an envi-
ronmental change. At this point, thus, an agent in our method is expected to
learn earlier than the other method.

4 Computer experiments

4.1 Fundamental learning algorithms for experiments

With respect to the method proposed in Section 3, it is desirable that it is
broadly applicable. Our method, therefore, is applied to two primary rein-
forcement learning algorithms, Q-learning (Watkins & Dayan, 1992; Sutton &
Barto, 1998) and Actor-Critic (AC) (Sutton & Barto, 1998), to verify its inde-
pendence from reinforcement learning algorithms. We describe the equations
involving the learning parameters made variable by adopting the proposed
method in Section 3 to each reinforcement learning algorithm as follows.

4.1.1 Q-learning

Q-learning is a method for learning all state action values. wα, wγ, and wβ are
attached to the parameters α, γ, and β in the Q-learning algorithm, respec-
tively, as

δ = rt + (γ/wγ) · max
j

Qi′j − Qij (9)

Qij ← Qij + (α · wα) · δ (10)

Pij =
exp((β · wβ)Qij)

∑n
k=1 exp((β · wβ)Qik)

. (11)

4.1.2 Actor-Critic (AC)

AC architecture consists of the critic evaluating state and the actor selecting
actions. The actor selects actions by using the error δ from the critic. wα,
wγ, and wβ are attached to the parameters α, γ, and β in the AC algorithm,

7



respectively, as

δ = rt + (γ/wγ) · Vt+1 − Vt (12)

Vt ← Vt + (α · wα) · δ (13)

Pij =
exp((β · wβ)pij)

∑n
k=1 exp((β · wβ)pik)

, (14)

In the AC algorithm, the critic and the actor have learning speed parameters, α
and αp, respectively. Here, the parameter αp in the AC algorithm is multiplied
by wαp as

pij ← pij + (αp · wαp) · δ. (15)

4.2 Learning problems

In order to verify the independence of the proposed method from learning
problems, we perform two experiments: a maze problem and a two-linked arm
robot moving forward problem. The former is a typical problem in which states
and actions are discontinuous, while the latter is a problem in which the states
and actions are continuous. We examine whether the proposed method is effec-
tive for solving these two problems which include unexpected environmental
changes.

The setting parameters of our proposed method are described in Table 2.
These parameters are the best in various parameters which we tried. The
parameters in Q-learning were α = 0.1, γ = 0.9, and β = 3.3; those in AC were
α = 0.1, αp = 0.02, γ = 0.9, and the β = 3.3 after preliminary experiments
to learn adequately. In the algorithm, we used τ1 = 100, τ2 = 100, µ = 0.2,
ν2 = 0.3, and n = 100. Please refer to Schweighofer and Doya (2003) for the
details of these parameters and the algorithm. The learning parameters at
unexpected environmental changes were reset as follows for comparison with
other methods: α = 0.1, (αp = 0.02 in AC), γ = 0.9, and β = 3.3.

4.2.1 Maze problem

This robot learns to find the path from the start to the goal (Kimura, 2002) as
shown in Fig. 2(a). A reward 100 is received at reaching the goal. The robot
restarts from the start point when it reaches the goal point. The states (25)
are positions of the robot; the actions (4) involve moving in four directions:
up, down, right, and left.
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Table 2
Setting parameters.

hχ updating steps n sχ

wγ 1 100 60% of

wβ 1 100 maximum

wα in Q-learning 9 100 sum rt

wα in AC 2 100 (initial value = 1)

wαp in AC 4 100
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GOAL

START

(a)

GOAL

START

(b)

Fig. 2. Maze problem. (a) Normal situation. (b) New wall as an unexpected envi-
ronmental change.

First, we make the robot learn to perform almost convergent actions for 5000
steps in the environment as shown in Fig. 2(a). Next, a new wall which blocks
the robot appears in the learned path as shown in Fig. 2(b) as an unexpected
environmental change. The robot must relearn an other path to the goal.
After this change, we make the robot learn for 2000 steps with the parameters
maintained.

We have repeated the experiments twenty times in each case: the fixed learning
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parameters, Schweighofer and Doya (2003), and our proposed method. The
results in Q-learning and AC are shown in Table 3.

Table 3 shows the mean ± SEM (standard error of the mean) obtained reward
after the environmental change for 2000 steps in Q-learning and AC. The mean
reward of our method was obviously the best from among all the methods.
The data of the first step of obtaining the reward cannot be calculated in the
fixed parameters and in the Schweighofer and Doya (2003) algorithm because
the agents in those methods almost could not obtain the reward in 2000 steps
after the environmental change.

Figure 3 indicate an example of changes in down r, α · wα, γ/wγ, and β · wβ,
and subtotal of reward for 100 steps around the environmental change in
Q-learning by our method. α · wα, γ/wγ, and β · wβ are the learning rate,
the discount factor, and the inverse temperature, respectively. After the en-
vironmental change, obtained reward returned efficiently by three parameters
controlled by downr.

4.2.2 Two-linked arm robot moving forward problem

A two-linked arm robot learns to move forward (Kimura & Kobayashi, 1997;
Kimura, 2002) as shown in Fig. 4(a). The reward is defined as the length that
the body moved forward in the current step (Moving backward is a negative
reward). We apply Q-learning with CMAC (cerebellar model articulation con-
troller) (Albus, 1975; Sutton, 1996) to this problem for continuous states and
actions. The CMACs consisted of six tilings with eight divisions of each di-
mension and a constant offset. The learning parameter in this Q-learning with
CMAC was α = 0.05 because the robot with α = 0.1 cannot learn well even
in the first constant environment. The remainder of parameters is described
in the previous experiment.

First, we make the robot learn to perform almost convergent actions for 20000
steps in the environment as shown in Fig. 4(a). Next, a tunnel appears in front
of the robot as shown in Fig. 4(b) as an unexpected environmental change.
The entrance of the tunnel becomes the obstacle when the arm of the robot
catches on it. After this environmental change, we make the robot to learn for
2000 steps with the parameters maintained.

We have repeated the experiments twenty times in each case: the fixed learn-
ing parameters, Schweighofer and Doya (2003) algorithm, and our proposed
method. The results are shown in Table 4.

Table 4 shows the mean ± SEM obtained reward after the environmental
change for 2000 steps. The mean reward of our method is significantly higher
than those of any other methods. The mean first step of our method was the
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Table 3
Results of the maze problem. (a) Obtained reward after the environmental change
for 2000 steps. (b) First step of obtaining reward after the environmental change.
Data are mean ± SEM <number of times of reward acquisition> of twenty rep-
etitions. †p < 0.05 is significantly better than the Schweighofer and Doya (2003)
algorithm.

(a)

fixed parameters Schweighofer and proposed method

Doya Algorithm

Q-learning 0±0 < 0 > 20±16 < 2 > †18595±495 < 20 >

AC 0±0 < 0 > 5±5 < 1 > †13490±1326 < 20 >

(b)

fixed parameters Schweighofer and proposed method

Doya Algorithm

Q-learning — < 0 > — < 2 > 382±27 < 20 >

AC — < 0 > — < 1 > 366±38 < 20 >

Table 4
Results of the arm robot problem. (a) Obtained reward after the environmental
change for 2000 steps. (b) First step of obtaining reward after the environmental
change. Data are mean ± SEM <number of times of reward acquisition> of twenty
repetitions. ∗p < 0.05 is significantly better than the fixed parameters; †p < 0.05 is
significantly better than the Schweighofer and Doya (2003) algorithm.

(a)

fixed parameters Schweighofer and proposed method

Doya Algorithm

Q-learning with 2485±370 < 18 > ∗5462±378 < 20 > †9494±532 < 20 >

CMAC

(b)

fixed parameters Schweighofer and proposed method

Doya Algorithm

Q-learning with 1444±79 < 18 > ∗545±53 < 20 > †136±53 < 20 >

CMAC
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Fig. 3. An example of changes in down r, three actual learning parameters (α ·wα,
γ/wγ , and β · wβ), and subtotal of reward for 100 steps in the maze problem. The
environmental change occurred at 5000 steps.
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(a)

(b)

Fig. 4. Two-linked arm robot moving forward problem. (a) Normal situation. (b)
Entrance of tunnel as an unexpected environmental change.

fastest by a significant amount in all methods although that of the Schweighofer
and Doya (2003) algorithm was significantly faster than that of the fixed pa-
rameters.

Figure 5 indicate an example of changes in down r, α · wα, γ/wγ, and β · wβ,
and subtotal of reward for 100 steps around the environmental change in Q-
learning by our method. Temporal traces of these values similar to that of the
arm robot problem are seen.

4.3 Contribution of each parameter

In order to verify contribution of each parameter, we perform more experi-
ments with various combination of fixed and variable parameters. We exam-
ine whether the proposed directions of changing parameters as in Section 2 is
effective.
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Fig. 5. An example of changes in down r, three actual learning parameters (α ·wα,
γ/wγ , and β · wβ), and subtotal of reward for 100 steps in the arm robot problem.
The environmental change occurred at 20000 steps.
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Table 5 shows the mean ± SEM obtained reward after the environmental
change for 2000 steps in the maze problem with various combination of fixed
and variable parameters. ᾱ, β̄, and γ̄ mean that each parameter reversely
changes against our proposed method, where only hγ is restricted so that
γ does not exceeded 1. In AC, it is shown that each parameter contributes
to rapidly follow the unexpected environmental change. In Q-learning, the
change of β in the opposite direction against our proposed method significantly
disturb the relearning although the change of β in the direction with our
proposed method does not significantly contribute to the relearning. These
results support that our proposed directions of changing parameters as in
Section 2 is effective.

Table 6 shows the mean ± SEM obtained reward after the environmental
change for 2000 steps in the arm robot problem with various combination
of fixed and variable parameters. α and γ obviously contribute. β does not
disturb the relearning at least although β is not significantly effect. These
results support that our proposed directions of changing parameters as in
Section 2 is almost effective.

5 Conclusion

We propose a new simple parameter control method in reinforcement learning.
This method has the feature that a robot using the method is able to rapidly
follow unexpected environmental changes by controlling the parameters ac-
cording to the changes of neuromodulators in an emergency.

In order to verify whether the proposed method is independent of learning
algorithms and learning problems, we have experimented with the Q-learning
and the AC for learning algorithms, and with the maze, in which they are
discontinuous, and the two-linked arm robot, in which states and actions are
continuous, for learning problems. Consequently, in each situation, the robots
with our proposed method could respond more rapidly to the unexpected
environmental changes than the robots with the other methods.

In order to investigate the validity of changing each learning parameter in our
method, comparative experiments were additionally conducted. These results
show that our decision on directions of changing parameters in an emergency
is appropriate. The change only of inverse temperature parameter β, however,
is not effective although the change of β with the changes of α and β is
effective. This shows that β is closely related to other parameters α or γ.
If our proposed directions of changing neuromodulators are effective also in
physiology, the physiological observation of effect like this research on NA
would be difficult.
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In our method, as long as a certain behavior has succeeded in comparison
with the past, a better behavior will not be able to be found although the
behavior can be improved rapidly in a deteriorating situation. In other words,
the exploration capability of our method in an emergency is accelerated instead
of losing wide exploration capability when having succeeded.

The computer experiments show that the agents using our proposed method
could rapidly respond to unexpected environmental changes, as long as we
have tested it in some environments in this issue where we especially take
notice of the robustness in reinforcement learning algorithms and types of
learning problem. We will still need further verification on the various types
of robustness.

Considering how the brain hardware realizes our proposed method is a fu-
ture work. Our method, however, is effective for rapid action improvement in
machine learning.
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Table 5
Results of the maze problem with various combination of fixed and variable param-
eters: obtained reward after the environmental change for 2000 steps. ᾱ, β̄, and γ̄
mean that each parameter changes perversely against our proposed method. Data
are mean ± SEM <number of times of reward acquisition> of twenty repetitions.
∗p < 0.05 is significantly better than fixed parameters; †p < 0.05 is significantly
worse than proposed method.

Q-learning AC

no change (fixed parameters) 0±0 < 0 > 0±0 < 0 >

α ∗†10415±660 < 20 > ∗†3795±830 < 20 >

β †0±0 < 0 > †0±0 < 0 >

γ ∗†770±119 < 19 > ∗†765±129 < 20 >

α, γ ∗17630±675 < 20 > ∗†8295±1560 < 20 >

α, β ∗†11405±486 < 20 > ∗†2005±642 < 14 >

β, γ ∗†940±184 < 20 > ∗†115±25 < 14 >

α, β̄, γ ∗†15870±1069 < 20 > ∗†295±58 < 18 >

α, β, γ̄ †0±0 < 0 > †0±0 < 0 >

ᾱ, β, γ †0±0 < 0 > †0±0 < 0 >

α, β, γ (proposed method) 18595±495 < 20 > 13490±1326 < 20 >
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Table 6
Results of the arm robot problem with various combination of fixed and variable
parameters: obtained reward after the environmental change for 2000 steps. ᾱ, β̄,
γ̄ mean that each parameter reversely changes with our proposed method. Data
are mean ± SEM <number of times of reward acquisition> of twenty repetitions.
∗p < 0.05 is significantly better than fixed parameters; †p < 0.05 is significantly
worse than proposed method.

Q-learning with CMAC

no change (fixed parameters) 2485±370 < 18 >

α ∗†7491±439 < 20 >

β †505±225 < 5 >

γ ∗†6593±262 < 20 >

α, γ ∗9473±430 < 20 >

α, β ∗†5353±762 < 16 >

β, γ ∗†6105±195 < 20 >

α, β̄, γ ∗9033±510 < 20 >

α, β, γ̄ †0±0 < 0 >

ᾱ, β, γ †147±70 < 7 >

α, β, γ (proposed method) 9494±532 < 20 >
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